Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.795
Filtrar
1.
Front Immunol ; 15: 1354952, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629066

RESUMO

Thioredoxin domain containing protein-5 (TXNDC5), also known as endothelial protein-disulfide isomerase (Endo-PDI), is confined to the endoplasmic reticulum through the structural endoplasmic reticulum retention signal (KDEL), is a member of the PDI protein family and is highly expressed in the hypoxic state. TXNDC5 can regulate the rate of disulfide bond formation, isomerization and degradation of target proteins through its function as a protein disulfide isomerase (PDI), thereby altering protein conformation, activity and improving protein stability. Several studies have shown that there is a significant correlation between TXNDC5 gene polymorphisms and genetic susceptibility to inflammatory diseases such as rheumatoid, fibrosis and tumors. In this paper, we detail the expression characteristics of TXNDC5 in a variety of diseases, summarize the mechanisms by which TXNDC5 promotes malignant disease progression, and summarize potential therapeutic strategies to target TXNDC5 for disease treatment.


Assuntos
Neoplasias , Isomerases de Dissulfetos de Proteínas , Humanos , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Neoplasias/genética , Fibrose , Progressão da Doença
2.
J Agric Food Chem ; 72(12): 6265-6275, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38487839

RESUMO

Paeonia suffruticosa Andr. is a well-known landscape plant worldwide and also holds significant importance in China due to its medicinal and dietary properties. Previous studies have found that Cortex Moutan (CM), the dried root bark of P. suffruticosa, showed antiplatelet and cardioprotective effects, although the underlying mechanism and active compounds remain to be revealed. In this study, protein disulfide isomerase (PDI) inhibitors in CM were identified using a ligand-fishing method combined with the UHPLC-Q-TOF-MS assay. Further, their binding sites and inhibitory activities toward PDI were validated. The antiplatelet aggregation and antithrombotic activity were investigated. The results showed that two structurally similar compounds in CM were identified as the inhibitor for PDI with IC50 at 3.22 µM and 16.73 µM; among them Mudanpioside C (MC) is the most effective PDI inhibitor. Molecular docking, site-directed mutagenesis, and MST assay unequivocally demonstrated the specific binding of MC to the b'-x domain of PDI (Kd = 3.9 µM), acting as a potent PDI inhibitor by interacting with key amino acids K263, D292, and N298 within the b'-x domain. Meanwhile, MC could dose-dependently suppress collagen-induced platelet aggregation and interfere with platelet activation, adhesion, and spreading. Administration of MC can significantly inhibit thrombosis formation without disturbing hemostasis in mice. These findings present a promising perspective on the antithrombotic properties of CM and highlight the potential application of MC as lead compounds for targeting PDI in thrombosis therapy.


Assuntos
Paeonia , Trombose , Animais , Camundongos , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Fibrinolíticos , Simulação de Acoplamento Molecular , Trombose/metabolismo
3.
J Bacteriol ; 206(4): e0043323, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38493438

RESUMO

In bacteria, disulfide bonds contribute to the folding and stability of proteins important for processes in the cellular envelope. In Escherichia coli, disulfide bond formation is catalyzed by DsbA and DsbB enzymes. DsbA is a periplasmic protein that catalyzes disulfide bond formation in substrate proteins, while DsbB is an inner membrane protein that transfers electrons from DsbA to quinones, thereby regenerating the DsbA active state. Actinobacteria including mycobacteria use an alternative enzyme named VKOR, which performs the same function as DsbB. Disulfide bond formation enzymes, DsbA and DsbB/VKOR, represent novel drug targets because their inhibition could simultaneously affect the folding of several cell envelope proteins including virulence factors, proteins involved in outer membrane biogenesis, cell division, and antibiotic resistance. We have previously developed a cell-based and target-based assay to identify molecules that inhibit the DsbB and VKOR in pathogenic bacteria, using E. coli cells expressing a periplasmic ß-Galactosidase sensor (ß-Galdbs), which is only active when disulfide bond formation is inhibited. Here, we report the construction of plasmids that allows fine-tuning of the expression of the ß-Galdbs sensor and can be mobilized into other gram-negative organisms. As an example, when expressed in Pseudomonas aeruginosa UCBPP-PA14, which harbors two DsbB homologs, ß-Galdbs behaves similarly as in E. coli, and the biosensor responds to the inhibition of the two DsbB proteins. Thus, these ß-Galdbs reporter plasmids provide a basis to identify novel inhibitors of DsbA and DsbB/VKOR in multidrug-resistant gram-negative pathogens and to further study oxidative protein folding in diverse gram-negative bacteria. IMPORTANCE: Disulfide bonds contribute to the folding and stability of proteins in the bacterial cell envelope. Disulfide bond-forming enzymes represent new drug targets against multidrug-resistant bacteria because inactivation of this process would simultaneously affect several proteins in the cell envelope, including virulence factors, toxins, proteins involved in outer membrane biogenesis, cell division, and antibiotic resistance. Identifying the enzymes involved in disulfide bond formation in gram-negative pathogens as well as their inhibitors can contribute to the much-needed antibacterial innovation. In this work, we developed sensors of disulfide bond formation for gram-negative bacteria. These tools will enable the study of disulfide bond formation and the identification of inhibitors for this crucial process in diverse gram-negative pathogens.


Assuntos
Proteínas de Bactérias , Escherichia coli , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Fatores de Virulência/metabolismo , Dissulfetos/química , Oxirredução
4.
Appl Environ Microbiol ; 90(4): e0126023, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38501925

RESUMO

The hydrophobic layer of Aspergillus conidia, composed of RodA, plays a crucial role in conidia transfer and immune evasion. It self-assembles into hydrophobic rodlets through intramolecular disulfide bonds. However, the secretory process of RodA and its regulatory elements remain unknown. Since protein disulfide isomerase (PDI) is essential for the secretion of many disulfide-bonded proteins, we investigated whether PDI is also involved in RodA secretion and assembly. By gene knockout and phenotypic analysis, we found that Pdi1, one of the four PDI-related proteins of Aspergillus fumigatus, determines the hydrophobicity and integrity of the rodlet layer of the conidia. Preservation of the thioredoxin-active domain of Pdi1 was sufficient to maintain conidial hydrophobicity, suggesting that Pdi1 mediates RodA assembly through its disulfide isomerase activity. In the absence of Pdi1, the disulfide mismatch of RodA in conidia may prevent its delivery from the inner to the outer layer of the cell wall for rodlet assembly. This was demonstrated using a strain expressing a key cysteine-mutated RodA. The dormant conidia of the Pdi1-deficient strain (Δpdi) elicited an immune response, suggesting that the defective conidia surface in the absence of Pdi1 exposes internal immunogenic sources. In conclusion, Pdi1 ensures the correct folding of RodA in the inner layer of conidia, facilitating its secretion into the outer layer of the cell wall and allowing self-assembly of the hydrophobic layer. This study has identified a regulatory element for conidia rodlet assembly.IMPORTANCEAspergillus fumigatus is the major cause of invasive aspergillosis, which is mainly transmitted by the inhalation of conidia. The spread of conidia is largely dependent on their hydrophobicity, which is primarily attributed to the self-assembly of the hydrophobic protein RodA on the cell wall. However, the mechanisms underlying RodA secretion and transport to the outermost layer of the cell wall are still unclear. Our study identified a critical role for Pdi1, a fungal protein disulfide isomerase found in regulating RodA secretion and assembly. Inhibition of Pdi1 prevents the formation of correct S-S bonds in the inner RodA, creating a barrier to RodA delivery and resulting in a defective hydrophobic layer. Our findings provided insight into the formation of the conidial hydrophobic layer and suggested potential drug targets to inhibit A. fumigatus infections by limiting conidial dispersal and altering their immune inertia.


Assuntos
Aspergilose , Aspergillus fumigatus , Aspergillus fumigatus/genética , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas Fúngicas/metabolismo , Esporos Fúngicos/genética , Aspergilose/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Dissulfetos/metabolismo
5.
Biomed Pharmacother ; 173: 116336, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412717

RESUMO

OBJECTIVE: Protein disulfide isomerase A3 (PDIA3) promotes the correct folding of newly synthesized glycoproteins in the endoplasmic reticulum. PDIA3 is overexpressed in most tumors, and it may become a biomarker of cancer prognosis and immunotherapy. Our study aims to detect the expression level of PDIA3 in gastric cancer (GC) and its association with GC development as wells as the underlying mechanisms. METHODS: GC cell lines with PDIA3 knockdown by siRNA, CRISPR-cas9 sgRNAs or a pharmacological inhibitor of LOC14 were prepared and used. PDIA3 knockout GC cells were established by CRISPR-cas9-PDIA3 system. The proliferation, migration, invasion and cell cycle of GC cells were analyzed by cell counting kit-8 assay, wound healing assay, transwell assay and flow cytometry, respectively. Immunodeficient nude mice was used to evaluate the role of PDIA3 in tumor formation. Quantitative PCR and western blot were used for examining gene and protein expressions. RNA sequencing was performed to see the altered gene expression. RESULTS: The expressions of PDIA3 in GC tissues and cells were increased significantly, and its expression was negatively correlated with the three-year survival rate of GC patients. Down-regulation of PDIA3 by siRNA, LOC14 or CRISPR-cas9 significantly inhibited proliferation, invasion and migration of GC cells TMK1 and AGS, with cell cycle arrested at G2/M phase. Meanwhile, decreased PDIA3 significantly inhibited growth of tumor xenograft in vivo. It was found that cyclin G1 (encoded by CCNG1 gene) expression was decreased by downregulation of PDIA3 in GC cells both in vitro and in vivo. In addition, protein levels of other cell cycle related factors including cyclin D1, CDK2, and CDK6 were also significantly decreased. Further study showed that STAT3 was associated with PDIA3-mediated cyclin G1 regulation. CONCLUSION: PDIA3 plays an oncogenic role in GC. Our findings unfolded the functional role of PDIA3 in GC development and highlighted a novel target for cancer therapeutic strategy.


Assuntos
Benzotiazóis , Neoplasias Gástricas , Animais , Camundongos , Humanos , Neoplasias Gástricas/patologia , Regulação para Baixo/genética , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Camundongos Nus , Ciclina G1/genética , RNA Guia de Sistemas CRISPR-Cas , Proliferação de Células/genética , Linhagem Celular Tumoral , Ciclo Celular/genética , RNA Interferente Pequeno/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
6.
Cell Biol Int ; 48(4): 541-550, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38321831

RESUMO

Osteoporosis is a chronic skeletal disease and the major source of risk for fractures in aged people. It is urgent to investigate the mechanism regulating osteoporosis for developing potential treatment and prevention strategies. Osteogenic differentiation of preosteoblast enhances bone formation, which might be a promising strategy for treatment and prevention of osteoporosis. Protein disulfide isomerase family A, member 3 (PDIA3) could induce bone formation, yet the role of PDIA3 in osteogenic differentiation of preosteoblast remains unknown. In this study, m6 A RNA methylation was detected by methylated RNA immunoprecipitation (MeRIP), while mRNA stability was identified by RNA decay assay. Besides, protein-protein interaction and protein phosphorylation were determined using co-immunoprecipitation (Co-IP). Herein, results revealed that PDIA3 promoted osteogenic differentiation of preosteoblast MC3T3-E1. Besides, PDIA3 mRNA methylation was suppressed by FTO alpha-ketoglutarate dependent dioxygenase (FTO) as RNA methylation reduced PDIA3 mRNA stability during osteogenic differentiation of MC3T3-E1 cells. Moreover, ubiquitin specific peptidase 20 (USP20) improved FTO level through inhibiting FTO degradation while PDIA3 increased FTO level by enhancing USP20 phosphorylation during osteogenic differentiation of MC3T3-E1 cells, suggesting a positive feedback regulatory loop between PDIA3 and FTO. In summary, these findings indicated the mechanism of PDIA3 regulating osteogenic differentiation of preosteoblast and provided potential therapeutic targets for osteoporosis.


Assuntos
Osteogênese , Osteoporose , Humanos , Idoso , Osteogênese/genética , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Retroalimentação , Diferenciação Celular/genética , Osteoporose/metabolismo , Osteoblastos/metabolismo , Ubiquitina Tiolesterase/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato
7.
J Biol Chem ; 300(3): 105746, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354787

RESUMO

In the methylotrophic yeast Komagataella phaffii, we identified an endoplasmic reticulum-resident protein disulfide isomerase (PDI) family member, Erp41, with a peculiar combination of active site motifs. Like fungal ERp38, it has two thioredoxin-like domains which contain active site motifs (a and a'), followed by an alpha-helical ERp29c C-terminal domain (c domain). However, while the a domain has a typical PDI-like active site motif (CGHC), the a' domain instead has CGYC, a glutaredoxin-like motif which confers to the protein an exceptional affinity for GSH/GSSG. This combination of active site motifs has so far been unreported in PDI-family members. Homology searches revealed ERp41 is present in the genome of some plants, fungal parasites, and a few nonconventional yeasts, among which are Komagataella spp. and Yarrowia lipolytica. These yeasts are both used for the production of secreted recombinant proteins. Here, we analyzed the activity of K. phaffii Erp41. We report that it is nonessential in K. phaffii, and that it can catalyze disulfide bond formation in partnership with the sulfhydryl oxidase Ero1 in vitro with higher turnover rates than the canonical PDI from K. phaffii, Pdi1, but slower activation times. We show how Erp41 has unusually fast glutathione-coupled oxidation activity and relate it to its unusual combination of active sites in its thioredoxin-like domains. We further describe how this determines its unusually efficient catalysis of dithiol oxidation in peptide and protein substrates.


Assuntos
Isomerases de Dissulfetos de Proteínas , Dobramento de Proteína , Saccharomycetales , Dissulfetos/química , Glutationa/metabolismo , Oxirredução , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Estrutura Terciária de Proteína , Saccharomycetales/enzimologia , Tiorredoxinas/metabolismo
8.
Acta Physiol (Oxf) ; 240(4): e14116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38400621

RESUMO

AIM: Protein disulfide isomerases (PDIs) are involved in platelet aggregation and intravascular thrombosis, but their role in regulating endothelial function is unclear. Here, we characterized the involvement of vascular PDIA1 in angiotensin II (Ang II)-induced endothelial dysfunction in mice. METHODS: Endothelial dysfunction was induced in C57BL/6JCmd male mice via Ang II subcutaneous infusion, and PDIA1 was inhibited with bepristat. Endothelial function was assessed in vivo with magnetic resonance imaging and ex vivo with a myography, while arterial stiffness was measured as pulse wave velocity. Nitric oxide (NO) bioavailability was measured in the aorta (spin-trapping electron paramagnetic resonance) and plasma (NO2 - and NO3 - levels). Oxidative stress, eNOS uncoupling (DHE-based aorta staining), and thrombin activity (thrombin-antithrombin complex; calibrated automated thrombography) were evaluated. RESULTS: The inhibition of PDIA1 by bepristat in Ang II-treated mice prevented the impairment of NO-dependent vasodilation in the aorta as evidenced by the response to acetylcholine in vivo, increased systemic NO bioavailability and the aortic NO production, and decreased vascular stiffness. Bepristat's effect on NO-dependent function was recapitulated ex vivo in Ang II-induced endothelial dysfunction in isolated aorta. Furthermore, bepristat diminished the Ang II-induced eNOS uncoupling and overproduction of ROS without affecting thrombin activity. CONCLUSION: In Ang II-treated mice, the inhibition of PDIA1 normalized the NO-ROS balance, prevented endothelial eNOS uncoupling, and, thereby, improved vascular function. These results indicate the importance of vascular PDIA1 in regulating endothelial function, but further studies are needed to elucidate the details of the mechanisms involved.


Assuntos
Angiotensina II , Doenças Vasculares , Camundongos , Masculino , Animais , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/farmacologia , Análise de Onda de Pulso , Trombina/metabolismo , Trombina/farmacologia , Camundongos Endogâmicos C57BL , Doenças Vasculares/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Endotélio Vascular , Óxido Nítrico/metabolismo
9.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396772

RESUMO

The interplay between metal ion binding and the activity of thiol proteins, particularly within the protein disulfide isomerase family, remains an area of active investigation due to the critical role that these proteins play in many vital processes. This research investigates the interaction between recombinant human PDIA1 and zinc ions, focusing on the subsequent implications for PDIA1's conformational stability and enzymatic activity. Employing isothermal titration calorimetry and differential scanning calorimetry, we systematically compared the zinc binding capabilities of both oxidized and reduced forms of PDIA1 and assessed the structural consequences of this interaction. Our results demonstrate that PDIA1 can bind zinc both in reduced and oxidized states, but with significantly different stoichiometry and more pronounced conformational effects in the reduced form of PDIA1. Furthermore, zinc binding was observed to inhibit the catalytic activity of reduced-PDIA1, likely due to induced alterations in its conformation. These findings unveil a potential regulatory mechanism in PDIA1, wherein metal ion binding under reductive conditions modulates its activity. Our study highlights the potential role of zinc in regulating the catalytic function of PDIA1 through conformational modulation, suggesting a nuanced interplay between metal binding and protein stability in the broader context of cellular redox regulation.


Assuntos
Pró-Colágeno-Prolina Dioxigenase , Isomerases de Dissulfetos de Proteínas , Humanos , Oxirredução , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/metabolismo , Zinco/química , Zinco/metabolismo
10.
Angew Chem Int Ed Engl ; 63(14): e202317789, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38342764

RESUMO

Disulfides in peptides and proteins are essential for maintaining a properly folded structure. Their oxidative folding is invariably performed in an aqueous-buffered solution. However, this process is often slow and can lead to misfolded products. Here, we report a novel concept and strategy that is bio-inspired to mimic protein disulfide isomerase (PDI) by accelerating disulfide exchange rates many thousand-fold. The proposed strategy termed organic oxidative folding is performed under organic solvents to yield correctly folded cysteine-rich microproteins instantaneously without observable misfolded or dead-end products. Compared to conventional aqueous oxidative folding strategies, enormously large rate accelerations up to 113,200-fold were observed. The feasibility and generality of the organic oxidative folding strategy was successfully demonstrated on 15 cysteine-rich microproteins of different hydrophobicity, lengths (14 to 58 residues), and numbers of disulfides (2 to 5 disulfides), producing the native products in a second and in high yield.


Assuntos
Cisteína , 60526 , Cisteína/metabolismo , Dobramento de Proteína , Biomimética , Peptídeos/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Oxirredução , Solventes , Dissulfetos/química , Estresse Oxidativo
11.
Funct Plant Biol ; 512024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38266276

RESUMO

Chickpea (Cicer arietinum ) is a grain crop that is an important source of protein, vitamins, carbohydrates and minerals. It is highly sensitive to salt stress, and salt damage to cellular homeostasis and protein folding affects production. Plants have several mechanisms to prevent cellular damages under abiotic stresses, such as proteins in the endoplasmic reticulum (protein isulfide somerases (PDIs) and PDI-like proteins), which help prevent the build-up of mis-folded proteins that are damaged under abiotic stresses. In this study, we completed initial comprehensive genome-wide analysis of the chickpea PDI gene family. We found eight PDI genes are distributed on six out of eight chromosomes. Two pairs of paralogous genes were found to have segmental duplications. The phylogenetic analysis showed that the PDI s have a high degree of homology in C. arietinum, Cicer reticulatum, Lens culinaris, Phaseolus acutifolius, Pisum sativum and Oryza sativa . The gene structure analysis displayed that CaPDI1-CaPDI8 have 9-12 exons except for CaPDI5 , which has 25 exons. Subcellular localisation indicated accumulation of CaPDIs in endoplasmic reticulum. Protein-conserved motifs and domain analysis demonstrated that thioredoxin domains of PDI family is present in all CaPDIs. CaPDI proteins have strong protein-protein interaction. In silico expression analysis showed that four out of eight PDI genes (CPDI2, CaPDI6, CaPDI7 and CaPDI8 ) were expressed under salt stress. Of these, expression of CaPDI2 and CaPDI8 was the highest. This work indicated that PDI genes are involved in salt stress tolerance in chickpea and the CaPDIs may be further studied for their role of inducing salt tolerance.


Assuntos
Cicer , Isomerases de Dissulfetos de Proteínas , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Cicer/genética , Cicer/metabolismo , Filogenia , Estresse Salino/genética , Estresse Fisiológico/genética
12.
Yakugaku Zasshi ; 144(1): 57-60, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38171796

RESUMO

AB5 toxins of pathogenic bacteria enter host cells and utilize the retrograde trafficking pathway to translocate to the cytoplasm and exert its pathogenesis. Cholera toxin and Shiga toxin reach the endoplasmic reticulum (ER), and the A subunit undergoes redox regulation by ER proteins to become active fragments, which pass through the ER membrane and translocate to the cytoplasm. By acting on molecular targets in the cytoplasm, the normal function of host cells are disrupted, causing diseases. ER chaperone proteins such as protein disulfide isomerase (PDI) and binding immunoglobulin protein (BiP) induce conformational changes triggered by the reduction of disulfide bonds in the A subunit. This is thought to be dependent on cysteine thiol-mediated redox regulation, but the detailed mechanism remains unclear. On the other hand, subtilase cytotoxin (SubAB), produced by enterohemorrhagic Escherichia coli (EHEC), localizes to the ER without translocating to the cytoplasm and cleaves BiP as a substrate. Therefore, it is thought that ER stress-based cytotoxicity and intestinal bleeding occur without translocating to the cytoplasm. We reported that PDI is involved in BiP cleavage through SubAB localization to the ER. Like other AB5 toxins, this indicates the involvement of redox regulation via chaperone proteins in the ER, but also suggests that SubAB does not translocate to the cytoplasm because it cleaves BiP. Although there are few reports on the redox state of ER protein thiols, it is suggested that polysulfidation, which is discussed in this symposium, may be involved.


Assuntos
Escherichia coli Êntero-Hemorrágica , Proteínas de Escherichia coli , Proteínas de Escherichia coli/toxicidade , Proteínas de Escherichia coli/metabolismo , Escherichia coli Êntero-Hemorrágica/metabolismo , Chaperonas Moleculares , Retículo Endoplasmático/metabolismo , Enterotoxinas , Proteínas de Transporte/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Oxirredução , Biologia
13.
Breast Cancer Res ; 26(1): 1, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167446

RESUMO

BACKGROUND: Despite radiotherapy ability to significantly improve treatment outcomes and survival in triple-negative breast cancer (TNBC) patients, acquired resistance to radiotherapy poses a serious clinical challenge. Protein disulfide isomerase exists in endoplasmic reticulum and plays an important role in promoting protein folding and post-translational modification. However, little is known about the role of protein disulfide isomerase family member 4 (PDIA4) in TNBC, especially in the context of radiotherapy resistance. METHODS: We detected the presence of PDIA4 in TNBC tissues and paracancerous tissues, then examined the proliferation and apoptosis of TNBC cells with/without radiotherapy. As part of the validation process, xenograft tumor mouse model was used. Mass spectrometry and western blot analysis were used to identify PDIA4-mediated molecular signaling pathway. RESULTS: Based on paired clinical specimens of TNBC patients, we found that PDIA4 expression was significantly higher in tumor tissues compared to adjacent normal tissues. In vitro, PDIA4 knockdown not only increased apoptosis of tumor cells with/without radiotherapy, but also decreased the ability of proliferation. In contrast, overexpression of PDIA4 induced the opposite effects on apoptosis and proliferation. According to Co-IP/MS results, PDIA4 prevented Tax1 binding protein 1 (TAX1BP1) degradation by binding to TAX1BP1, which inhibited c-Jun N-terminal kinase (JNK) activation. Moreover, PDIA4 knockdown suppressed tumor growth xenograft model in vivo, which was accompanied by an increase in apoptosis and promoted tumor growth inhibition after radiotherapy. CONCLUSIONS: The results of this study indicate that PDIA4 is an oncoprotein that promotes TNBC progression, and targeted therapy may represent a new and effective anti-tumor strategy, especially for patients with radiotherapy resistance.


Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/radioterapia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Carcinogênese , Transformação Celular Neoplásica , Família , Linhagem Celular Tumoral , Proliferação de Células
14.
J Biochem ; 175(4): 457-470, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38227582

RESUMO

In Corynebacterium glutamicum cells, cdbC, which encodes a protein containing the CysXXCys motif, is regulated by the global redox-responsive regulator OsnR. In this study, we assessed the role of the periplasmic protein CdbC in disulfide bond formation and its involvement in mycomembrane biosynthesis. Purified CdbC efficiently refolded scrambled RNaseA, exhibiting prominent disulfide bond isomerase activity. The transcription of cdbC was decreased in cells grown in the presence of the reductant dithiothreitol (DTT). Moreover, unlike wild-type and cdbC-deleted cells, cdbC-overexpressing (P180-cdbC) cells grown in the presence of DTT exhibited retarded growth, abnormal cell morphology, increased cell surface hydrophobicity and altered mycolic acid composition. P180-cdbC cells cultured in a reducing environment accumulated trehalose monocorynomycolate, indicating mycomembrane deformation. Similarly, a two-hybrid analysis demonstrated the interaction of CdbC with the mycoloyltransferases MytA and MytB. Collectively, our findings suggest that CdbC, a periplasmic disulfide bond isomerase, refolds misfolded MytA and MytB and thereby assists in mycomembrane biosynthesis in cells exposed to oxidative conditions.


Assuntos
Corynebacterium glutamicum , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Estresse Oxidativo , Oxirredução , Dissulfetos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
15.
Pathog Dis ; 812023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38061803

RESUMO

Leishmaniasis is a group of vector-borne diseases caused by intracellular protozoan parasites belonging to the genus Leishmania. Leishmania parasites can employ different and numerous sophisticated strategies, including modulating host proteins, cell signaling, and cell responses by parasite proteins, to change the infected host conditions to favor the parasite persistence and induce pathogenesis. In this sense, protein disulfide isomerases (PDIs) have been described as crucial proteins that can be modulated during leishmaniasis and affect the pathogenesis process. The effect of modulated PDIs can be investigated in both aspects, parasite PDIs and infected host cell PDIs, during infection. The information concerning PDIs is not sufficient in parasitology; however, this study aimed to provide data regarding the biological functions of such crucial proteins in parasites with a focus on Leishmania spp. and their relevant effects on the pathogenesis process. Although there are no clinical trial vaccines and therapeutic approaches, highlighting this information might be fruitful for the development of novel strategies based on PDIs for the management of parasitic diseases, especially leishmaniasis.


Assuntos
Leishmania , Leishmaniose , Humanos , Isomerases de Dissulfetos de Proteínas/metabolismo , Leishmaniose/parasitologia , Proteínas de Protozoários/metabolismo
16.
Cell Death Dis ; 14(12): 829, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097564

RESUMO

PDIA6 have been reported to be involved in a variety of cancers, however, the underlying role in endometrial cancer is still unclear. In this study, we aimed to study the function of PDIA6 in endometrial cancer. Firstly, we verified that PDIA6 was significantly upregulated in endometrial cancer, which was correlated with the progression of endometrial cancer patients. Furthermore, we identified PDIA6 significantly altered the ability of endometrial cancer cells to proliferate and metastasize. In addition, our result illustrated the oncogene effects of PDIA6 in promoting malignant biological behavior of endometrial cancer cells by regulating TGF-ß pathway and being modulated by TRPM2-AS/miR-424-5p axis for the first time. Taken together, this study suggested that PDIA6 may be a new candidate target for endometrial cancer therapy.


Assuntos
Neoplasias do Endométrio , MicroRNAs , Canais de Cátion TRPM , Feminino , Humanos , MicroRNAs/metabolismo , Canais de Cátion TRPM/genética , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Endométrio/patologia , Isomerases de Dissulfetos de Proteínas/metabolismo
17.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138960

RESUMO

Non-alcoholic fatty liver disease or steatosis is an accumulation of fat in the liver. Increased amounts of non-esterified fatty acids, calcium deficiency, or insulin resistance may disturb endoplasmic reticulum (ER) homeostasis, which leads to the abnormal accumulation of misfolded proteins, activating the unfolded protein response. The ER is the primary location site for chaperones like thioredoxin domain-containing 5 (TXNDC5). Glutathione participates in cellular oxidative stress, and its interaction with TXNDC5 in the ER may decrease the disulfide bonds of this protein. In addition, glutathione is utilized by glutathione peroxidases to inactivate oxidized lipids. To characterize proteins interacting with TXNDC5, immunoprecipitation and liquid chromatography-mass spectrometry were used. Lipid peroxidation, reduced glutathione, inducible phospholipase A2 (iPLA2) and hepatic transcriptome were assessed in the AML12 and TXNDC5-deficient AML12 cell lines. The results showed that HSPA9 and PRDX6 interact with TXNDC5 in AML12 cells. In addition, TXNDC5 deficiency reduced the protein levels of PRDX6 and HSPA9 in AML12. Moreover, lipid peroxidation, glutathione and iPLA2 activities were significantly decreased in TXNDC5-deficient cells, and to find the cause of the PRDX6 protein reduction, proteasome suppression revealed no considerable effect on it. Finally, hepatic transcripts connected to PRDX6 and HSPA9 indicated an increase in the Dnaja3, Mfn2 and Prdx5 and a decrease in Npm1, Oplah, Gstp3, Gstm6, Gstt1, Serpina1a, Serpina1b, Serpina3m, Hsp90aa1 and Rps14 mRNA levels in AML12 KO cells. In conclusion, the lipid peroxidation system and glutathione mechanism in AML12 cells may be disrupted by the absence of TXNDC5, a novel protein-protein interacting partner of PRDX6 and HSPA9.


Assuntos
Isomerases de Dissulfetos de Proteínas , Tiorredoxinas , Linhagem Celular , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Glutationa/metabolismo , Metabolismo dos Lipídeos , Peroxidação de Lipídeos , Fígado/metabolismo , Fosfolipases A2 Independentes de Cálcio/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Tiorredoxinas/metabolismo , Animais , Camundongos
18.
Nutrients ; 15(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37960182

RESUMO

PDIA3 is an endoplasmic reticulum disulfide isomerase, which is involved in the folding and trafficking of newly synthesized proteins. PDIA3 was also described as an alternative receptor for the active form of vitamin D (1,25(OH)2D3). Here, we investigated an impact of PDIA3 in mitochondrial morphology and bioenergetics in squamous cell carcinoma line A431 treated with 1,25(OH)2D3. It was observed that PDIA3 deletion resulted in changes in the morphology of mitochondria including a decrease in the percentage of mitochondrial section area, maximal diameter, and perimeter. The 1,25(OH)2D3 treatment of A431∆PDIA3 cells partially reversed the effect of PDIA3 deletion increasing aforementioned parameters; meanwhile, in A431WT cells, only an increase in mitochondrial section area was observed. Moreover, PDIA3 knockout affected mitochondrial bioenergetics and modulated STAT3 signaling. Oxygen consumption rate (OCR) was significantly increased, with no visible effect of 1,25(OH)2D3 treatment in A431∆PDIA3 cells. In the case of Extracellular Acidification Rate (ECAR), an increase was observed for glycolysis and glycolytic capacity parameters in the case of non-treated A431WT cells versus A431∆PDIA3 cells. The 1,25(OH)2D3 treatment had no significant effect on glycolytic parameters. Taken together, the presented results suggest that PDIA3 is strongly involved in the regulation of mitochondrial bioenergetics in cancerous cells and modulation of its response to 1,25(OH)2D3, possibly through STAT3.


Assuntos
Isomerases de Dissulfetos de Proteínas , Vitamina D , Vitamina D/farmacologia , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas/metabolismo , Vitaminas , Respiração Celular , Glicólise
19.
J Agric Food Chem ; 71(47): 18414-18423, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37966975

RESUMO

The successful expression and secretion of recombinant proteins in cell factories significantly depend on the correct folding of nascent peptides, primarily achieved through disulfide bond formation. Thus, optimizing cellular protein folding is crucial, especially for proteins with complex spatial structures. In this study, protein disulfide isomerases (PDIs) from various species were introduced into Saccharomyces cerevisiae to facilitate proper disulfide bond formation and enhance recombinant protein secretion. The impacts of these PDIs on recombinant protein production and yeast growth metabolism were evaluated by substituting the endogenous PDI1. Heterologous PDIs cannot fully compensate the endogenous PDI. Furthermore, protein folding mediators, PDI and ER oxidoreductase 1 (Ero1), from different species were used to increase the production of complex human serum albumin (HSA) fusion proteins. The validated folding mediators were then introduced into unfolded protein response (UPR)-optimized strains, resulting in a 7.8-fold increase in amylase-HSA and an 18.2-fold increase in albiglutide compared with the control strain. These findings provide valuable insights for optimizing protein folding and expressing HSA-based drugs.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Albumina Sérica Humana/genética , Albumina Sérica Humana/metabolismo , Dobramento de Proteína , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Recombinantes/metabolismo , Dissulfetos/metabolismo
20.
Langmuir ; 39(45): 15974-15985, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37906943

RESUMO

Engineered gold nanoparticles (AuNPs) have great potential in many applications due to their tunable optical properties, facile synthesis, and surface functionalization via thiol chemistry. When exposed to a biological environment, NPs are coated with a protein corona that can alter the NPs' biological identity but can also affect the proteins' structures and functions. Protein disulfide isomerase (PDI) is an abundant protein responsible for the disulfide formation and isomerization that contribute to overall cell redox homeostasis and signaling. Given that AuNPs are widely employed in nanomedicine and PDI plays a functional role in various diseases, the interactions between oxidized (oPDI) and reduced (rPDI) with 50 nm citrate-coated AuNPs (AuNPs) are examined in this study using various techniques. Upon incubation, PDI adsorbs to the AuNP surface, which leads to a reduction in its enzymatic activity despite limited changes in secondary structures. Partial enzymatic digestion followed by mass spectrometry analysis shows that orientation of PDI on the NP surface is dependent on both its oxidation state and the PDI:AuNP incubation ratios.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Adsorção , Nanopartículas Metálicas/química , Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...